Exporting SAS Datasets to DDI 3 XML files: Data, Metadata, and More Metadata

Larry Hoyle, Institute for Policy and Social Research, University of Kansas

Joachim Wackerow, GESIS-ZUMA
(Centre for Survey Research and Methodology, German Social Science Infrastructure Services)
What would you do with these data if this were all you were given?

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Date</th>
<th>Time</th>
<th>Nickname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M1</td>
<td>Joe <In the know> Schmo</td>
<td>2011-02-29</td>
<td>11:49</td>
<td></td>
</tr>
<tr>
<td>2M6</td>
<td>Bill Hill</td>
<td>2014-01-01</td>
<td>01:01</td>
<td></td>
</tr>
<tr>
<td>3F6</td>
<td>Donna O'Fauna</td>
<td>2014-05-08</td>
<td>05:25</td>
<td></td>
</tr>
<tr>
<td>4M6</td>
<td>Rob "Bob" Cobb</td>
<td>2014-12-01</td>
<td>01:23</td>
<td></td>
</tr>
<tr>
<td>5M6</td>
<td>Tom Applebaum</td>
<td>2015-03-15</td>
<td>15:15</td>
<td></td>
</tr>
<tr>
<td>6F6</td>
<td>Louise Mac&Cheese</td>
<td>2007-06-07</td>
<td>07:08</td>
<td></td>
</tr>
<tr>
<td>7M6</td>
<td>Jack Black</td>
<td>2015-01-11</td>
<td>11:11</td>
<td></td>
</tr>
<tr>
<td>8F6</td>
<td>Jill Hill</td>
<td>2014-01-04</td>
<td>04:14</td>
<td></td>
</tr>
<tr>
<td>9m-3</td>
<td>Gno Avocado</td>
<td>1999-04-03</td>
<td>03:03</td>
<td></td>
</tr>
</tbody>
</table>

SGF Paper 137-2008, Larry Hoyle and Joachim Wackerow
Would this be better?

<table>
<thead>
<tr>
<th>#</th>
<th>Gender</th>
<th>ID</th>
<th>.</th>
<th>Date</th>
<th>Time</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>1</td>
<td>.1</td>
<td>29feb52</td>
<td>11:49</td>
<td>Joe <In the know> Schmo</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>6.021e23</td>
<td>.2</td>
<td>01jan72</td>
<td>14:01</td>
<td>Bill Hill</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>6.02214139e23</td>
<td>.3</td>
<td>08jun85</td>
<td>05:25</td>
<td>Donna O'Fauna</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>6.02214149e23</td>
<td>.4</td>
<td>25dec64</td>
<td>01:23</td>
<td>Rob "Bob" Cobb</td>
</tr>
<tr>
<td>5</td>
<td>m</td>
<td>6.02214159e23</td>
<td>.5</td>
<td>15mar75</td>
<td>15:15</td>
<td>Tom Applebaum</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>6.02214179e23</td>
<td>.6</td>
<td>05jun07</td>
<td>08:09</td>
<td>Louise Mac&Cheese</td>
</tr>
<tr>
<td>7</td>
<td>m</td>
<td>6.02214209e23</td>
<td>.7</td>
<td>11nov11</td>
<td>11:11</td>
<td>Jack Black</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>6.02214219e23</td>
<td>.8</td>
<td>01jan72</td>
<td>14:04</td>
<td>Jill Hill</td>
</tr>
<tr>
<td>9</td>
<td>m</td>
<td>-3</td>
<td>.9</td>
<td>01apr99</td>
<td>03:03</td>
<td>Gno Avocado</td>
</tr>
</tbody>
</table>
What about this?
Data in these forms leave us with questions

• Technical
 – How is sex coded? How is fee scaled? Is percent a proportion?

• “Business”
 – In what currency is fee? What does avocado mean?

• Discovery
These questions are addressed by metadata

• Data about data
 – Sometimes categorized as “Technical” and “Business”
 – Paper vs electronic
 – Structured vs unstructured
Machine Actionable Metadata

• Not just in machine readable format
• In a well defined structure
 – Could be XML or could be properties of objects
 – A program can use this information
 – Metadata can be used in various combinations
 • Presented as a codebook
 • Offered as a Web service
Data Documentation Initiative (DDI)
http://www.ddialliance.org/

• A standard for the compilation, presentation, and exchange of documentation for datasets in the social and behavioral sciences
• XML based
• Begun 1995, first public release 2000
• Version 3 planned for June
• Life-cycle of data - from conception to re-use
• Metadata and data can be included in the same file
Life Cycle of Data

Study Concept → Data Collection → Data Processing → Data Distribution → Data Archiving → Data Discovery → Data Analysis

Repurposing
DDI Features

• Metadata capture from planning and production to dissemination and analysis
• An underlying data model that permits the expression of the model in alternative technologies
• Coverage of more of the data life cycle, with an emphasis on data collection
• Modular design
• Enhanced support for multiple languages
• Support for variable comparison and harmonization
• Structured mechanisms for identification and versioning that enable the creation of registries like question banks
• Core HTML for formatting of unstructured text
More DDI Features

- Elimination of redundancies through a new grouping model and an extensive set of reusable elements
- Grouping of study series for longitudinal and comparative research
- Capturing comparative information for the creation of harmonized data
- ISO/IEC 11179 compliant data registries such as question, variable, and concept banks
- Capability to create "DDI profiles" for specific uses
- Mechanism to carry data inline
- Alignment with other metadata standards, including Dublin Core (cross-domain information resource description), SDMX (time-series data), ISO/IEC 11179 (metadata registry), and FGDC and ISO 19115 (geographic standards)
- Extensibility
Central DDI Modules

Study Unit
- Identification
- Coverage
 - Topical
 - Temporal
 - Spatial
- Conceptual Components
 - Universe
 - Concept
 - Representation (optional replication)
- Purpose, Abstract, Proposal, Funding
- Identification is mapped to Dublin Core and basic Dublin Core is included as an option
- Geographic coverage mapped to FGDC
 - bounding box
 - spatial object
 - polygon description of levels and identifiers
- Universe Scheme, Concept Scheme
 - link of concept, universe, representation through Variable
 - also allows storage as a ISO/IEC 11179 compliant registry

Physical Storage
- Physical Data Structure
 - Links to Data Relationships
 - Links to Variable or NCube Coordinate
 - Description of physical storage structure
 - fixed, delimited or proprietary
- Physical Instance
 - One-to-one relationship with a data file
 - Coverage constraints
 - Variable and category statistics
- Data set
 - Inline data items

Logical Product
- Category Schemes
- Coding Schemes
- Variables
- NCubes
- Variable and NCube Groups
- Data Relationships

Data Collection
- Methodology
- Question Scheme
 - Question
 - Response domain
- Instrument
- Coding Instructions
 - question to raw data
 - raw data to public file
- Question and Response Domain
 - designed to support Question Banks
 - Question Scheme is a maintainable object
- Organization and flow of questions into Instrument
 - Used to drive CAI systems
- Coding Instructions
 - Reuse by Questions, Variables, and comparison

SGF Paper 137-2008, Larry Hoyle and Joachim Wackerow
Study Unit

- Identification
- Coverage
 - Topical
 - Temporal
 - Spatial
- Conceptual Components
 - Universe
 - Concept
 - Representation (optional replication)
- Purpose, Abstract, Proposal, Funding

- Identification is mapped to Dublin Core and basic Dublin Core is included as an option
- Geographic coverage mapped to FGDC
 - bounding box
 - spatial object
 - polygon description of levels and identifiers
- Universe Scheme, Concept Scheme
 - link of concept, universe, representation through Variable
 - also allows storage as a ISO/IEC 11179 compliant registry

- Physical instance
 - One-to-one relationship with a data file
 - Coverage constraints
 - Variable and category statistics
- Data set
 - Inline data items

- Category Schemes
- Coding Schemes
- Variables
- NCubes
- Variable and NCube Groups
- Data Relationships

- Used as both question response domains and variable representations
- Used as both question response domains and variable representations
- Link representations to concepts and universes through references
- Built from variables (dimensions and attributes)
 - Map directly to SDMX structures
 - More generalized to accommodate legacy data

SGF Paper 137-2008, Larry Hoyle and Joachim Wackerow
Data Collection

- Methodology
- Question Scheme
 - Question
 - Response domain
- Instrument
- Coding Instructions
 - Question to raw data
 - Raw data to public file

- Question and Response Domain
 - Question Scheme is a maintainable object
- Organization and flow of questions into Instrument
 - Used to drive CAI systems
- Coding Instructions
 - Reuse by Questions, Variables, and comparison

Data Relationships
Logical Product

- Category Schemes
- Coding Schemes
- Variables
- NCubes
- Variable and NCube Groups
- Data Relationships

- Used as both question response domains and variable representations
- Used as both question response domains and variable representations
- Link representations to concepts and universes references
- Built from variables (dimensions and attributes)
 - Map directly to SDMX structures
 - More generalized to accommodate legacy data
Physical Storage

- Physical Data Structure
 - Links to Data Relationships
 - Links to Variable or NCube Coordinate
 - Description of physical storage structure
 - fixed, delimited or proprietary
- Physical Instance
 - One-to-one relationship with a data file
 - Coverage constraints
 - Variable and category statistics
- Data set
 - Inline data items
From SAS Dataset to DDI File
Two Approaches

• Two approaches
 – DATA steps and PROCS wrapped in macros
 – Tagset for ODS (Output Delivery System)
 • User written
 • ODS with default tagset plus XSLT transformation

• Both need to gather metadata
From SAS Dataset to DDI File
Gathering the Metadata

• A SAS dataset contains data (of course)
• It also contains a mix of technical and business metadata
 – Labels: dataset and variables
 – Formats: Links to native and user formats
 – Integrity constraints
Join information from:

- **DICTIONARY.COLUMNS**
 - Name, length, type,Fmtname, informat, precision, scale, sortedby, idxusage, notnull
- **PROC FORMAT, CNTLOUT dataset**
 - Information from formats – ranges and labels
- **Format documentation dataset (coded in program)**
 - Represents e.g. Currency-euros
 - FormatDocumentation e.g. Writes numeric values with a leading euro symbol (E), a comma that separates every three digits, and a period that separates the decimal fraction
- **Proc Contents**
 - Integrity constraints – type, variables, whereClause, ForeignReference, OnDelete, OnUpdate
- **DICTIONARY.CONSTRAINT_COLUMN_USAGE**
 - ColumnName
- **DICTIONARY.TABLES**
 - Memlabel, crdate, modate, nob, nvar,
- **The dataset**
 - data
Labels

- **Dataset**
 - mySASdata(label='Test Data for SAS to DDI 3 program')

- **Variable**
 - label avocado = 'Number of avacados';
 - label sex = 'Respondant''s Gender';
 - label percentTime = 'Percent of time counting Avacados';
 - label fee = 'Fee in Euros';
Formats – native SAS format

- format percentTime percent8.1;
 - A proportion to be displayed as a percent
- format fee EUROX10.2;
 - Also tells us fee is in Euros
- format DOB IS8601DA.;
 - Number of days since January 1, 1960
- format TOB IS8601TM.;
 - Seconds since midnight of the current day
Formats - user

- format avocado avocadoNumber;

value avocadoNumber
 low-<0 = 'avocados owed'
 1 = 'lonley avocado'
 1<-6.02214149e23 = 'too few avocados'
 6.02214149e23-6.02214209e23 = 'guaca mole'
 6.02214209e23<-high = 'a party';

(tells us someone likes a bad pun)
Formats – there might also be extraneous user formats

value sexAll
 0 = 'Young Male'
 1 = 'Adult Male'
 2 = 'Young Female'
 3 = 'Adult Female'
;

value sex
 0 = 'Male'
 1 = 'Male'
 2 = 'Female'
 3 = 'Female'
;

 /* format BMI is not used and is here to be ignored later */

value BMI
 low<-18.5 = "Underweight"
 18.5-24.9 = "Normal weight"
 25-29.9 = "Overweight"
 30-high = "Obesity";
Integrity Constraints

add constraint prim_key Primary key(id)
add constraint DOB_present Not Null(DOB)
add constraint id_GT_0 check(id GT 0)
gives us information about valid range
add constraint sex_MF check(sex in (.,1,2))
add constraint avocado_unique Unique(avocado)
add constraint name_fkey foreign key(name)
references work.RealPeople
valid values come from another table
Data Step Approach

- XML is just text
- Data step can write text to a file
- Static XML structure, known schema
- Content from SAS variables
“Non Technical” Metadata

```xml
<ns1:DDIInstance xmlns:r="ddi:reusable:3_0_CR" ........>
    <r:MaintainableID>
        <r:ID>testDDIFromSAS</r:ID>
    </r:MaintainableID>
    <r:Citation>
        <r:Title>DDI file from SAS dataset</r:Title>
        <dce:DCElements>
            <dc:title>DDI file from SAS dataset</dc:title>
        </dce:DCElements>
    </r:Citation>

    <s:StudyUnit>
        <r:MaintainableID>
            <r:ID>StudyUnit_001</r:ID>
            <r:Version>1.0</r:Version>
            <r:VersionResponsibility>IPSR - The University of Kansas</r:VersionResponsibility>
        </r:MaintainableID>
    </s:StudyUnit>

Can be lots more, including extensive explanatory text
```

SGF Paper 137-2008, Larry Hoyle and Joachim Wackerow
Technical Metadata

<l:Variable>
 <r:IdentifiableID><r:ID>ID</r:ID><r:Name>ID</r:Name></r:IdentifiableID>
 <r:Label>Identification Number</r:Label>
 <l:VariableDefinition> SAS varnum: 1
 SAS idxusage SIMPLE
 SAS transcode: yes
 SAS Integrity Constraints: Check(Where ID>0)
 Primary Key(Variables ID) </l:VariableDefinition>
 <l:ConceptReference><r:Reference><r:ID>ID</r:ID></r:Reference></l:ConceptReference>
 <l:Representation>
 <l:NumericRepresentation type="Double"></l:NumericRepresentation>
 </l:Representation>
</l:Variable>

This identifier complexity allows for generating a URN which can be referenced in a global metadata structure.
Metadata – implied from format

<l:Variable>
 <r:IdentifiableID><r:ID>fee</r:ID><r:Name>fee</r:Name></r:IdentifiableID>
 <r:Label>Fee in Euros</r:Label>
 <l:VariableDefinition> SAS varnum: 9
 SAS format: EUROX10.2
 SAS transcode: yes </l:VariableDefinition>
 <l:ConceptReference><r:Reference><r:ID>fee</r:ID></r:Reference>
</l:ConceptReference>

<l:Representation measurementUnit="Currency-euros" >
 <l:Role> SAS format indicates: Writes numeric values with a
 leading euro symbol (E), a period that separates
 every three digits, and a comma that separates
 the decimal fraction </l:Role>
 <l:NumericRepresentation type="Double"></l:NumericRepresentation>
</l:Representation>
</l:Variable>
Data can be written in the XML too

<ds:ItemValue>
 <ds:VariableReference>
 <r:Reference>
 <r:ID>fee</r:ID>
 </r:Reference>
 </ds:VariableReference>
 <ds:Value>9000</ds:Value>
</ds:ItemValue>

SGF Paper 137-2008, Larry Hoyle and Joachim Wackerow
User Written Tagset

• Extension of Output Delivery System (ODS) by user-defined tagsets
• Output in ODS as a stream of events
• Capture of events, triggering of specific action
• User-defined tagset defines template definitions for a target format
• User-defined tagsets can be added to existing SAS ODS tagsets
Tagset – SAS Events can trigger user events

define event doc ;
 start:
 trigger _parameter ;
 trigger _head ;
 trigger _DDIIInstance start ;
 finish:
 trigger _DDIIInstance finish ;
 putlog ' DDI file written: ' BODY_NAME ;
end ;
Tagset - User Defined Events

define event _DDIInstance_;
 start:
 put '<ddi:DDIInstance';
 put ' xsi:schemaLocation="ddi:instance:' $ddi_version ' instance.xsd"';

 ...
 '>' ;
 indent ;
 putl '<r:MaintainableID>';
 indent ;
 putl '<r:ID>XX</r:ID>';
 xdent ;
 putl '</r:MaintainableID>';
 trigger _StudyUnit start ;

 finish:
 trigger _StudyUnit finish ;
 xdent ;
 putl '</ddi:DDIInstance>';
 end ;
Tagset Streams

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

<table>
<thead>
<tr>
<th>#</th>
<th>Variable</th>
<th>Type</th>
<th>Len</th>
<th>Format</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V1</td>
<td>Num</td>
<td>4</td>
<td>ZA</td>
<td>Study Number</td>
</tr>
<tr>
<td>2</td>
<td>V2</td>
<td>Num</td>
<td>6</td>
<td>Res</td>
<td>Respondent Number</td>
</tr>
<tr>
<td>3</td>
<td>V3</td>
<td>Num</td>
<td>3</td>
<td>VA.</td>
<td>Country</td>
</tr>
<tr>
<td>4</td>
<td>V4</td>
<td>Num</td>
<td>3</td>
<td>VB.</td>
<td>Good citizen: Always vote in elections</td>
</tr>
<tr>
<td>5</td>
<td>V5</td>
<td>Num</td>
<td>3</td>
<td>VC.</td>
<td>Good citizen: Never try to evade taxes</td>
</tr>
</tbody>
</table>

Stream Variable Scheme
- Definition of Variable V5 with label

Stream Category Scheme
- Definition of VC used by variable V5

Stream Physical Data Product
- Width definition of variable v5: 3

SGF Paper 137-2008, Larry Hoyle and Joachim Wackerow
Row event triggers a cascade of events writing to multiple streams

define event row;
 start:
 break / if ^cmp(section, 'body') ;
 do /if cmp($proc, 'Contents') ;
 do / if cmp($leaf, 'Attributes') ;
 break ;
 ndent ;
 putl '<OneAttribute>' ;
 else / if cmp($leaf, 'EngineHost') ;
 break ;
 ndent ;
 putl '<OneEngineHost>' ;
 else / if cmp($leaf, 'Variables') ;
 done ;
 else ;
 break ;
 done ;

define event _master_variable ;
 start:
 trigger _Concept start ;
 trigger _Variable start ;
Here the `<l:Variable>` element is written

```xml
define event _Variable;
  start:
    flush;
    open LogicalProduct;
    putl '<l:Variable>';
    flush;
    close;
  finish:
    flush;
    open LogicalProduct;
    ndent;
    putl '<r:IdentifiableID>';
    ndent;
    put '<r:ID>Variable_';
    put $variable_label;
    putl '</r:Label>';
    putl '<r:Reference>';
    put $variable_name;
    putl '<r:IdentifiableID>';
    put '<r:ID>Concept_';
    put $variable_name;
    putl '</r:Label>';
    putl '<l:ConceptReference>';
    ndent;
    putl '<r:Reference>';
    ndent;
    putl '<r:ID>Variable_';
    put $variable_label;
    putl '</r:Label>';
    putl '</l:ConceptReference>';
    ndent;
    putl '</r:IdentifiableID>';
    put '<r:Label>';
    put $variable_label;
    putl '</r:Label>';
    putl '<l:ConceptReference>';
    ndent;
    putl '<r:Reference>';
    put $variable_name;
    putl '</r:Name>';
    xdent;
    putl '</r:Reference>';
    xdent;
    putl '</l:ConceptReference>';
    xdent;
    putl '</l:Variable>';
end;
```
Outputting the Streams

define event _StudyUnit;

... finish:

 trigger _ConceptualComponent finish;
 putstream ConceptualComponent;
 delstream ConceptualComponent;
 trigger _LogicalProduct finish;
 putstream LogicalProduct;
 delstream LogicalProduct;

 xdent;

 putl '</s:StudyUnit>' ;

end;

SGF Paper 137-2008, Larry Hoyle and Joachim Wackerow
Using the Tagset

/* specifying the DDI tagset as ODS destination and opening a file */
ods tagsets.DDI file='ddi.xml' encoding='utf-8';

proc contents data=library.mySASdata;
run;
proc report data=userFormats;
run;
proc freq data=library.mySASdata;
run;
/* closing the ODS destination for DDI */
ods tagsets.DDI close;
http://www.ddialliance.org/index.html
Questions?

• LARRY HOYLE
 • Institute for Policy and Social Research
 • University of Kansas
 • 1541 Lilac Road, 607 Blake
 • Lawrence, KS 66044-3177
 • USA
 • +1 785-864-9110
 • LarryHoyle@ku.edu
 • www.ipsr.ku.edu

• JOACHIM WACKEROW
 • GESIS-ZUMA (Centre for Survey Research and Methodology, German Social Science Infrastructure Services)
 • B2, 1
 • 68159 Mannheim
 • Germany
 • +49 621 1246 262
 • joachim.wackerow@gesis.org
 • www.gesis.org

SGF Paper 137-2008, Larry Hoyle and Joachim Wackerow